
NCSC-TG-006 
VERSION-1 

NATIONAL COMPUTER SECURITY CENTER 

Reproduced From 
Best Available Copy 

A GUIDE TO 
UNDERSTANDING 

CONFIGURATION 
MANAGEMENT 

IN 
TRUSTED SYSTEMS 

28 March 1988 

Approved for Public Release: 
distribution unlimited. 

20010802 088 



NATIONAL COMPUTER SECURITY CENTER 
Fort George G Meade, Maryland 20755-6000 

NCSC-TG-006-88 
Library No. S-228,590 

FOREWORD 

This publication, "A Guide to Understanding Configuration Management in Trusted 
Systems", is being issued by the National Computer Security Center (NCSC) under the 
authority of and in accordance with Department of Defense (DoD) Directive 5215.1. The 
guidelines described in this document provide a set of good practices related to configuration 
management in Automated Data Processing (ADP) systems employed for processing classified 
and other sensitive information. Recommendations for revision to this guideline are 
encouraged and will be reviewed biannually by the National Computer Security Center 
through a formal review process. Address all proposals for revision through appropriate 
channels to: 

National Computer Security Center 
9800 Savage Road 
Fort George G. Meade, MD 20755-6000 

Attention: Chief, Computer Security Technical Guidelines 

Patrick R. Gallagher, Jr. 
Director 
National Computer Security Center 

28 March 1988 



ACKNOWLEDGMENTS 

Special recognition is extended to James N. Menendez, National Computer 
Security Center (NCSC), as project manager and primary author of this document. 

Special acknowledgment is given to Grant Wagner, NCSC, and Dana Nell Stigdon, 
NCSC, for their constant help and guidance in the production of this document. 
Additionally, Dana Nell Stigdon, was responsible for writing the section on the 
Ratings Maintenance Program. Acknowledgment is also given to all those 
members of the computer security community who contributed their time and 
expertise by actively participating in the review of this document. 



CONTENTS 

FOREWORD  i 

ACKNOWLEDGMENTS  ii 

CONTENTS  iii 

PREFACE  v 

1. PURPOSE  1 

2. SCOPE  1 

3. CONTROL OBJECTIVES  2 

4. ORGANIZATION  2 

5. OVERVIEW OF CONFIGURATION MANAGEMENT PRINCIPLES .. 3 

5.1    PURPOSE OF CONFIGURATION MANAGEMENT  3 

6. MEETING THE CRITERIA REQUIREMENTS  4 

6.1 THE B2 CONFIGURATION MANAGEMENT 

REQUIREMENTS   4 

6.2 THE B3 CONFIGURATION MANAGEMENT 

REQUIREMENTS  4 

6.3 THE Al CONFIGURATION 

MANAGEMENT REQUIREMENTS  5 

7. FUNCTIONS OF CONFIGURATION MANAGEMENT  6 

7.1 CONFIGURATION IDENTIFICATION  6 

7.1.1    Configuration Items  7 

7.2 CONFIGURATION CONTROL  8 

7.3 CONFIGURATION STATUS ACCOUNTING  9 

7.4 CONFIGURATION AUDIT  10 

8. THE CONFIGURATION MANAGEMENT PLAN  12 

9. IMPLEMENTATION METHODS  14 

9.1 THE BASELINE CONCEPT  14 

9.2 CONFIGURATION MANAGEMENT AT MER, INC  15 

9.3 THE CONFIGURATION CONTROL BOARD  17 



10. OTHER TOPICS - -  20 

10.1 TRUSTED DISTRIBUTION  20 

10.2 FUNCTIONAL TESTING  20 

10.3 CONFIGURATION MANAGEMENT TRAINING  21 

10.4 CONFIGURATION MANAGEMENT SUPERVISION  21 

11. RATINGS MAINTENANCE PROGRAM  22 

12. CONFIGURATION MANAGEMENT SUMMARY  23 

APPENDIX A: AUTOMATED TOOLS   25 

A.I    UNIX(1)SCCS  25 

A.2   VAX DEC/CMS  26 

GLOSSARY  

(1) Unix is a registered trademark of Bell Laboratories 

29 

REFERENCES -  3 ] 

IV 



PREFACE 

Throughout this guideline there will be recommendations made that are not included in the 
Trusted Computer System Evaluation Criteria (TCSEC) as requirements. Any recommendations 
that are not in the TCSEC will be prefaced by the word "should," whereas all requirements 
will be prefaced by the word "shall." It should be noted that a TCSEC rating will only be 
based upon meeting the TCSEC requirements. Recommendations are made in order to 
provide additional ways of increasing assurance. It is hoped that this will help to avoid any 
confusion. 



1. PURPOSE 

The Trusted Computer System Evaluation Criteria (TCSEC) is the standard used for evaluating 
the effectiveness of security controls built into ADP systems. The TCSEC is divided into 
four divisions: D, C, B, and A, ordered in a hierarchical manner with the highest division, 
A, being reserved for systems providing the best available level of assurance. Within divisions 
C through A are a number of subdivisions known as classes, which are also ordered in a 
hierarchical manner to represent different levels of security in these classes. 

For TCSEC classes B2 through Al, the TCSEC requires that all changes to the Trusted 
Computing Base (TCB) be controlled by configuration management. Configuration management 
of a trusted system consists of identifying, controlling, accounting for, and auditing all 
changes made to the TCB during its development, maintenance, and design. The primary 
purpose of this guideline is to provide guidance to developers of trusted systems on what 
configuration management is and how it may be implemented in the development and life- 
cycle of a trusted system. This guideline has also been designed to provide guidance to 
developers of all systems on the importance of configuration management and how it may be 
implemented. 

Examples in this document are not to be construed as the only implementation that will 
satisfy the TCSEC requirement. The examples are merely suggestions of appropriate 
implementations. The recommendations in this document are also not to be construed as 
supplementary requirements to the TCSEC. The TCSEC is the only metric against which 
systems are to be evaluated. 

This guideline is part of an on-going program to provide helpful guidance on TCSEC issues 
and the features they address. 

2. SCOPE 

An important security feature of TCSEC classes B2 through Al is that there be configuration 
management procedures to manage changes to the Trusted Computing Base (TCB) and all of 
the documentation and tests affected by these changes. Additionally, it is recommended that 
such plans and procedures exist for systems not being considered for an evaluation or whose 
target evaluation class may be less than B2. The assurance provided by configuration 
management is beneficial to all systems. This guideline will discuss configuration management 
and its features as they apply to computer systems and products, with specific attention 
being given to those that are being built with the intention of meeting the requirements of 
the TCSEC, and to those systems planning to be re-evaluated under the Ratings Maintenance 
Program (RAMP) (see Section 11. RAMP). 

Except in cases where there is a distinction between the configuration management of a 
trusted system and an untrusted system, the word "system" shall be used as the object of 
configuration management, encompassing both the system and the TCB. It should be noted 
that the TCSEC only requires the TCB to be controlled by configuration management, 



although it is recommended that the entire system be maintained under configuration 
management. 

3. CONTROL OBJECTIVES 

The TCSEC gives the following as the Assurance Control Objective: 

"Systems that are used to process or handle classified or other sensitive information 
must be designed to guarantee correct and accurate interpretation of the security 
policy and must not distort the intent of that policy. Assurance must be provided 
that correct implementation and operation of the policy exists throughout the 
system's life-cycle."[1] 

Configuration management maintains control of a system throughout its life-cycle, ensuring 
that the system in operation is the correct system, implementing the correct security policy. 
The Assurance Control Objective as it relates to configuration management leads to the 
following control objective that may be applied to configuration management: 

"Computer systems that process and store sensitive or classified information depend 
on the hardware and software to protect that information. It follows that the 
hardware and software themselves must be protected against unauthorized changes 
that could cause protection mechanisms to malfunction or be bypassed completely. 
[For this reason, changes to trusted computer systems, during their entire life- 
cycle, must be carefully considered and controlled to ensure that the integrity of 
the protection mechanism is maintained.] Only in this way can confidence be 
provided that the hardware and software interpretation of the security policy is 
maintained accurately and without distortion."[1] 

4. ORGANIZATION 

This document has been written to provide the reader with an understanding of what 
configuration management is and how it may be implemented in an ADP system. 

For developers of trusted systems, this document also relates the TCSEC requirements to 
the configuration management practices that meet them. This document has been organized 
to illustrate the connection between practices and requirements through the use of a 
numbering convention for the TCSEC requirements. The configuration management 
requirements have been broken down into 19 separate requirements in Section 6 of this 
document. The requirement number(s) will be located in parenthesis following its appropriate 
discussion, e.g., (Requirements 2, 15), signifies that the previous discussion dealt with 
TCSEC requirements 2 and 15 as stated in Section 6. 



5. OVERVIEW OF CONFIGURATION MANAGEMENT PRINCIPLES 

Configuration management consists of four separate tasks: identification, control, status 
accounting, and auditing. For every change that is made to an automated data processing 
(ADP) system, the design and requirements of the changed version of the system should be 
identified. The control task of configuration management is performed by subjecting every 
change to documentation, hardware, and software/firmware to review and approval by an 
authorized authority. Configuration status accounting is responsible for recording and 
reporting on the configuration of the product throughout the change. Finally, through the 
process of a configuration audit, the completed change can be verified to be functionally 
correct, and for trusted systems, consistent with the security policy of the system. 
Configuration management is a sound engineering practice that provides assurance that the 
system in operation is the system that is supposed to be in use. The assurance control 
objective as it relates to configuration management of trusted systems is to "guarantee that 
the trusted portion of the system works only as intended."[1] 

Procedures should be established and documented by a configuration management plan to 
ensure that configuration management is performed in a specified manner. Any deviation 
from the configuration management plan could contribute to the failure of the configuration 
management of a system entirely, as well as the trust placed in a trusted system. 

5.1 Purpose of Configuration Management 

Configuration management exists because changes to an existing ADP system are inevitable. 
The purpose of configuration management is to ensure that these changes take place in an 
identifiable and controlled environment and that they do not adversely affect any properties 
of the system, or in the case of trusted systems, do not adversely affect the implementation 
of the security policy of the TCB. Configuration management provides assurance that 
additions, deletions, or changes made to the TCB do not compromise the trust of the 
originally evaluated system. It accomplishes this by providing procedures to ensure that the 
TCB and all documentation are updated properly. 



6. MEETING THE CRITERIA REQUIREMENTS 

This section lists the TCSEC requirements for configuration management. Each requirement 
for each class has been listed separately and numbered. Each number may be referenced to 
the requirement discussions that follow in this document. This section is designed to serve 
as a quick reference for TCSEC class requirements. 

6.1 The B2 Configuration Management Requirements 

Requirement 1 — "During development and maintenance of the TCB, a configuration 
management system shall be in place."[1] 

Requirement 2 — The configuration management system shall maintain "control of changes 
to the descriptive top-level specification (DTLS)."[1] 

Requirement 3 — The configuration management system shall maintain control of changes 
to "other design data."[1] 

Requirement 4 — The configuration management system shall maintain control of changes 
to "implementation documentation" [1] (e.g., user's manuals, operating procedures). 

Requirement 5 — The configuration management system shall maintain control of changes 
to the "source code."[l] 

Requirement 6 — The configuration management system shall maintain control of changes 
to "the running version of the object code."[l] 

Requirement 7 - The configuration management system shall maintain control of changes to 
"test fixtures."[1] 

Requirement 8 — The configuration management system shall maintain control of changes 
to test "documentation."[1], 

Requirement 9 — "The configuration management system shall assure a consistent mapping 
among all documentation and code associated with the current version of the TCB."[1] 

Requirement 10 — The configuration management system shall provide tools "for generation 
of a new version of the TCB from the source code."[l] 

Requirement 11 - The configuration management system shall provide "tools for comparisons 
of a newly generated TCB version with the previous version in order to ascertain that only 
the intended changes have been made in the code that will actually be used as the new 
version of the TCB. "[1] 

6.2 The B3 Configuration Management Requirements 

The requirements for configuration management at TCSEC class B3 are the same as the 
requirements for TCSEC class B2. Although no additional requirements have been added, 



the configuration management system shall change to reflect changes in the design 
documentation requirements at class B3. This means that the additional documentation 
required for TCSEC class B3 shall also be maintained under configuration management. 

6.3 The Al Configuration Management Requirements 

Requirements 2 through 11 are the same as those described in Section 6.1 for a class B2 
rating. In addition the following requirements are added for class Al: 

Requirement 12 — "During the entire life-cycle, i.e., during the design, development, and 
maintenance of the TCB, a configuration management system shall be in place for all security- 
relevant hardware, firmware, and software."[1] 

Requirement 13 — The configuration management system shall maintain control of changes 
to the TCB hardware. 

Requirement 14 — The configuration management system shall maintain control of changes 
to the TCB software. 

Requirement 15 — The configuration management system shall maintain control of changes 
to the TCB firmware. 

Requirement 16 — The configuration management system shall "maintain control of changes 
to the formal model. "[1] 

Requirement 17 — The configuration management system shall maintain control of changes 
to the "formal top-level specifications."[1] 

Requirement 18 — The tools available for configuration management shall be "maintained 
under strict configuration control. "(1] 

Requirement 19 — "A combination of technical, physical, and procedural safeguards shall 
be used to protect from unauthorized modification or destruction the master copy or copies 
of all material used to generate the TCB."[1] 



7. FUNCTIONS OF CONFIGURATION MANAGEMENT 

7.1 Configuration Identification 

Configuration management procedures should enable a person to "identify the configuration 
of a system at discrete points in time for the purpose of systematically controlling changes 
to the configuration and maintaining the integrity and traceability of this configuration 
throughout the system life cycle."[4] The basic function of configuration identification is to 
identify the components of the design and implementation of a system. When it concerns 
trusted systems, this specifically means the design and implementation of the TCB. This task 
may be accomplished through the use of identifiers and baselines (see Section 9.1 The 
Baseline Concept). By establishing configuration items and baselines, the configuration of the 
system and its TCB can be accurately identified throughout the system life-cycle. 

At TCSEC class B2, the TCSEC requires that "changes to the descriptive top-level 
specification, other design data, implementation documentation, source code, the running 
version of the object code, and test fixtures and documentation"[1] of the TCB be controlled 
by configuration management (Requirements 2, 3, 4, 5, 6, 7, 8). Configuration identification 
helps achieve this control. The TCSEC requires that each change to the TCB shall be 
individually identifiable so that a history of the TCB may be generated at any time. At 
TCSEC class Al, the requirements are extended to include that the "formal model...and 
formal top-level specifications" of the TCB shall also be maintained under the configuration 
management system (Requirements 16, 17). 

The following is a sample list of what shall be identified and maintained under configuration 
management: 

* the baseline TCB including hardware, software, and firmware 
* any changes to the TCB hardware, software, and firmware since the previous baseline 
* design and user documentation 
* software tests including functional and system integrity tests 
* tools used for generating current configuration items (required at TCSEC class Al 
only) 

Configuration management procedures should make it possible to accurately reproduce any 
past TCB configuration. In the event a security vulnerability is discovered in a version of the 
TCB other than the most current one, analysts will need to be able to reconstruct the past 
environment. This reconstruction will be possible to perform if proper configuration 
identification has been performed throughout the system life-cycle. 

The TCSEC also requires at class B2 and above, that tools shall be provided "for generation 
of a new version of the TCB from the source code" and that there "shall be tools for 
comparing a newly generated version with the previous TCB version in order to ascertain 
that only the intended changes have been made in the code that will actually be used as the 
new version of the TCB"[1] (Requirements 10, 11). These tools are responsible for providing 
assurance that no additional changes have been inserted into the TCB that were not intended 



by the system designer. Automated tools are available that make it possible to identify 
changes to a system online (see APPENDIX A: AUTOMATED TOOLS). Any changes, or 
suggested changes to a system should be entered into an online library. This data can later 
be used to compare any two versions of a system. Such online configuration libraries may 
even provide the capability for line-by-line comparison of software modules and documenta- 
tion. At Class Al, the tools used to perform this function shall be "maintained under strict 
configuration controP[1]' (Requirement 18). These tools shall not be changed without having 
to undergo a strict review process by an authorized authority. 

7.1.1 Configuration Items 

A configuration item is an uniquely identifiable subset of the system configuration that 
represents the smallest portion of the system to be subject to independent configuration 
management change control procedures. Configuration items need to be individually controlled 
because any change to a configuration item may have some effect upon the properties of the 
system or the security policy of the TCB. 

Configuration items as they relate to the TCB, are subsets of the TCB's hardware, firmware, 
software, documentation, tests, and at class Al, development tools. Each module of TCB 
software for example, may constitute a separate configuration item. Configuration items 
should be assigned unique identifiers (e.g., serial numbers, names) to make them easier to 
identify throughout the system life-cycle. Proper identification plays a vital role in meeting 
the TCSEC requirement for class B2 that requires the configuration management system to 
"assure a consistent mapping among all documentation and code associated with the current 
version of the TCB"[1] (Requirement 9). Used in conjunction with a configuration audit, a 
consistent labeling system helps tie documentation to the code it describes. Not only does 
labeling each configuration item make them easier to identify, but it also increases the level 
of control that may be maintained over the entire system by making these items more 
traceable. 

Configuration items may be given an identifier through a random distribution process, but, 
it is more useful for the configuration identifier to describe the item it identifies. Selecting 
different fields of the configuration identifier to represent characteristics of the configuration 
item is one method of accomplishing this. The United States Social Security number is a 
"configuration identifier" we all have that uses such a system. The different fields of the 
number identify where we applied for the Social Security card, hence describing a little bit 
about ourselves. As the configuration identifier relates to computer systems, one field should 
identify the system version the item belongs to, the version of software that it is, or its 
interface with other configuration items. When using a numbering scheme like this, a change 
to a configuration item should result in the production of a new configuration identifier. This 
new identifier should be produced by an alteration or addition to the existing configuration 
identifier. A new version of a software program should not be identified by the same 
configuration item number as the original program. By treating the two versions as distinct 
configuration items, line- by-line comparisons are possible to perform. 

Identifying configuration items is a task that should be performed early in the development 
of the system, and once something is designated as a configuration item, the design of that 



item should not change without the knowledge and permission of the party controlling the 
item. Early identification of configuration items increases the level of control that may be 
maintained over the item and allows the item to be traced back through all stages of the 
system development. In the event that a configuration item is not identified until late in the 
development process, accountability for that item in the early stages of the system 
development would be non-existent. 

Configuration items may vary widely in complexity, size, and type, and it is important to 
choose configuration items with appropriate granularity. If the items are too large, the data 
identifying each one will overwhelm anyone trying to audit the system. If the items are too 
small, the amount of total identification data will overwhelm the system auditors.[2] The 
appropriate granularity for configuration items should be identified by each vendor and 
documented in the configuration management plan. 

7.2 Configuration Control 

"Configuration control involves the systematic evaluation, coordination, approval, or 
disapproval of proposed changes to the design and construction of a configuration item 
whose configuration has been formally approved."[5] Configuration control should begin in 
the earliest stages of the design and development of the system and extend over the full life 
of the configuration items included in the design and development stages. Early initiation of 
configuration control procedures provides increased accountability for the system by making 
its development more traceable. The traceability function of configuration control serves a 
dual purpose. It makes it possible to evaluate the impact of a change to the system and 
controls the change as it is being made. With configuration control in place, there is less 
chance of making undesirable changes to a system that may later adversely affect the security 
of the system. 

Initial phases of configuration control are directed towards control of the system configuration 
as defined primarily in design documents. For these, the Configuration Management plan 
shall specify procedures to ensure that all documentation is updated properly and presents 
an accurate description of the system and TCB configuration. Often a change to one area of 
a system may necessitate a change to another area. It is not acceptable to only write 
documentation for new code or newly modified code, but rather documentation for all parts 
of the TCB that were affected by the addition or change shall be updated accordingly. 
Although documentation may be available, unless it is kept under configuration management 
and updated properly it will be of little, if any use. In the event that the system is found to 
be deficient in documentation, efforts should be made to create new documentation for areas 
of the system where it is presently inadequate or non-existent. 

To meet the TCSEC requirements though, configuration control shall cover a broader area 
than just documentation, and at Class B2 shall also maintain control of "design data, source 
code, the running version of the object code, and test fixtures"[1] of the TCB (Requirements 
3, 5, 6, 7). A change to any of these shall be subject to review and approval by an authorized 
authority. 



For TCB configuration items, those items shall not be able to change without the permission 
of the controlling party. At TCSEC class Al, this requirement is strengthened to require 
"procedural safeguards'^!] to protect against unauthorized modification of the materials 
used in the TCB (Requirement 19). These procedures should require that not only does the 
controlling party need to give permission to have a change performed, but that the controlling 
party performs the change on the master copy of the TCB that will be released. This ensures 
against changes being made to the master copy that are different than the approved changes. 

The degree of configuration control that is exercised over the TCB will affect whether or not 
it meets the TCSEC requirements for configuration management. The configuration 
management requirements in the TCSEC require that a configuration management system be 
in place during the "development and maintenance of the TCB" at Class B2 (Requirement 
1), and at Class Al, "during the entire life-cycle"[1] of the TCB (Requirement 12). A 
minimal configuration control system that would not be sufficient in meeting the TCSEC 
requirements, may only provide for review after a change has been made to the system. A 
system such as this may ensure that the change is complete and acceptable and may control 
the release of the change, but for the most part, the control exercised is little more than an 
after-the-fact quality assurance check. This system is certainly better than having no control 
system in place, but it would not meet the TCSEC requirements for configuration 
management. What is missing from this system that would bring it closer to the B2 
requirements is control over the change as it is being made. The configuration control 
required by the TCSEC should provide for constant checking and approval of a change from 
its inception, through implementation and testing, to release. The level of control exercised 
over the TCB may exceed that of the rest of the system, but it is recommended that all parts 
of the system be under configuration control. 

In the case of a change to hardware or software/firmware that will be used at multiple sites, 
configuration control is also responsible for ensuring that each site receives the appropriate 
version of the system. 

The point behind configuration control of the TCB is that all changes to the TCB shall be 
approved, monitored, and evaluated to provide assurance that the TCB functions properly 
and that all security policies are maintained. 

7.3 Configuration Status Accounting 

Configuration status accounting is charged with reporting on the progress of the development 
in very specific ways. It accomplishes this task through the processes of data recording, data 
storing, and data reporting. The main objective of configuration status accounting is to 
record and report all information that is of significance to the configuration management 
process. What is of significance should be outlined in the Configuration Management Plan. 
The establishment of a new baseline (see Section 9.1 THE BASELINE CONCEPT) or the 
meeting of a milestone is an example of what should be recorded as configuration status 
accounting information. The requirements in the configuration management plan should be 
viewed as the minimum and any events that seem relevant to configuration management 
should be captured and recorded in that they may prove to be useful in the future. 



The configuration accounting system may consist of tracing through documentation manually 
to find the status of a change or it may consist of a database that can automatically track a 
change. As long as the information exists accurately in some form though, it will serve its 
purpose. The benefit of an online status accounting system is that the information may be 
kept in a more structured fashion, which would facilitate keeping it up to date. Being able 
to query a database for information concerning the status of a configuration change or 
configuration item would also be less cumbersome than sorting through notebook pages. 
Finally, the durability of a diskette or hard disk for storage outweighs that of a spiral 
notebook or folder, provided that it is properly backed up to avoid data loss in the event of 
a system failure. 

Whichever system is used, it should be possible to quickly locate all authorized versions of 
a configuration item, add together all authorized changes with comments about the reason 
for the change, and arrive at either the current status of that configuration item, or some 
intermediate status of the requested item. The status of all authorized changes being 
performed should be formulated into a System Status Report that will be presented at a 
Configuration Control Board meeting (see Section 9.3 THE CONFIGURATION CONTROL 
BOARD). 

Configuration status accounting "establishes records and reports which enable proper logistics 
support, i.e., the supplying of spares, instruction manuals, training and maintenance 
facilities', etc. to be established."[5] The records and reports produced through configuration 
status accounting should include a current configuration list, an historical change list, the 
original designs, the status of change requests and their implementation, and should provide 
the ability to trace all changes. 

7.4 Configuration Audit 

Configuration auditing involves checking for top to bottom completeness of the configuration 
accounting information "to ascertain that only the [authorized] changes have been made in 
the code that will actually be used as the new version of the TCB.'[1]' (Requirement 11) 
When a change has been made to a system, it should be reviewed and audited for its effect 
on the rest of the system. This should include reviewing and testing all software to ensure 
that the change has been performed correctly. 

Configuration auditing is concerned with examining the control process of the system and 
ensuring that it actually occurs the way it should. Configuration auditing for trusted systems 
verifies that after a change has been made to the TCB, the security features and assurances 
are maintained. Configuration audits should be performed periodically to verify the 
configuration status accounting information. The configuration audit minimizes the likelihood 
that unapproved changes have been inserted without going unnoticed and that the status 
accounting information adequately demonstrates that the configuration management assurance 
is valid. 

"A complete audit should include tracing each requirement down through all functions that 
implement it to see if that requirement is met."[2] Furthermore, the configuration audit 



should also ensure that no additions were made that were not required. For the audit to 
provide a useful form of technical review, it should be predictable and as foolproof as 
possible, i.e., there should be specific desired results. 

The configuration audit should verify that: 
* the architectural design satisfies the requirements 
* the detailed design satisfies the architectural design 
* the code implements the detailed design 
* the item/product performs per the requirements 
* the configuration documentation and the item/product match 

The main emphasis of configuration auditing is on providing the user with reasonable 
assurance that the version of a system in use is the same version that the user expects to be 
in use. Configuration audits ensure that the configuration control procedures of the 
configuration management system are being followed. The assurance feature of configuration 
auditing is provided through reasonable and consistent accountability procedures. All code 
audits should follow roughly the same procedures and perform the same set of checks for 
every change to the system. 



8. THE CONFIGURATION MANAGEMENT PLAN 

Effective configuration management should include a well-thought- out plan that should be 
prepared immediately after project initiation. This plan should describe, in simple, positive 
statements, what is to be done to implement configuration management in the system and 
TCB. A minimal configuration management plan may be limited to simply defining how 
configuration management will be implemented as it relates to the identification, control, 
accounting, and auditing tasks. The configuration management plan described in the following 
paragraphs is an example of a plan that goes into more detail and contains documentation 
on all aspects of configuration management, such as examples of documents to be used for 
configuration management, procedures for any automated tools available, or a Configuration 
Control Board roster (see Section 9.3 THE CONFIGURATION CONTROL BOARD). The 
configuration management plan should contain documentation that describes how the 
configuration management "tasks are to be carried out in sufficient detail that anyone 
involved with the project can consult them to determine how each specific development task 

relates to CM."[2] 

One portion of the configuration management plan should define the roles played by 
designers, developers, management, the Configuration Control Board, and all of the personnel 
involved with any part of the life-cycle of the system. The responsibilities required by all 
those involved with the system should be established and documented in the configuration 
management plan to ensure that the human element functions properly during configuration 
management. A list of Configuration Control Board members, or the titles of the members 
should also be included in this section. 

Any tools that will be available and used for configuration management should be documented 
in the configuration management plan. At TCSEC class Al, it is required that these tools 
shall be "maintained under strict configuration control"[l] (Requirement 18). These tools 
may include forms used for change control, conventions for labeling configuration items, 
software libraries, as well as any automated tools that may be available to support the 
configuration management process. Samples of any documents to be used for reporting 
should also be contained in the configuration management plan with a description of each. 

A section of the Configuration Management Plan should deal with procedures. Since the 
main thrust of configuration management consists of the following of procedures, there needs 
to be thorough documentation on what procedures one should follow during configuration 
management. The configuration management plan should provide the procedures to take to 
ensure that both user and design documentation are updated in synchrony with all changes 
to the system. It should include the guidelines for creating and maintaining functional tests 
and documentation throughout the life of the system. The configuration management plan 
should describe the procedures for how the design and implementation of changes are 
proposed, evaluated, coordinated, and approved or disapproved. The configuration manage- 
ment plan should also include the steps to take to ensure that only those approved changes 
are actually included and that the changes are included in all of the necessary areas. 

Another portion of the configuration management plan should define any existing 
"emergency" procedures, e.g., procedures for performing a time sensitive change without 

12 



going through a full review process, that may override the standard procedure. These 
procedures should define the steps for retroactively implementing configuration management 
after the emergency change has been completed. 

The configuration management plan is a living document and should remain flexible during 
design and development phases. Although the configuration management plan is in place to 
impose control on a project, it should still be open to additions and changes as designers 
and developers see fit. This is not to say that the configuration management plan is only a 
guide and need not be followed, but that modifications should be able to occur. If the plan 
is not followed, there is no way it will be able to provide the appropriate assurances. In the 
event that a change is needed to the configuration management plan, the change should be 
carefully evaluated and approved. In changes to the configuration management plan of a 
trusted system this evaluation shall ensure that the security features and assurances supported 
by the plan are still maintained after the change has been implemented. 

13 



9. IMPLEMENTATION METHODS 

This section discusses implementation methods for configuration management that may be 
used to meet some of the requirements of the TCSEC. Section 9.1 discusses the baseline 
concept as a method of configuration identification. The baseline concept utilizes the features 
of configuration management spoken of previously, but divides the life-cycle of the system 
into different baselines. 

Section 9.2 illustrates how a fictitious company, MER, Inc., conducts configuration 
management. They are attempting to meet the TCSEC requirements for a B2 system. 

Section 9.3 discusses the concept of a Configuration Control Board (CCB) for carrying out 
configuration control. A CCB is a body of people responsible for configuration control. This 
concept is widely used by many computer vendors. 

9.1 The Baseline Concept 

Baselines are established at pre-selected design points in the system life-cycle. One baseline 
may be used to describe a specific version of a system, or in some configuration management 
systems a single baseline may be defined at each of several major milestones. Baselines should 
be established at the discretion of the Configuration Control Board and outlined in the 
configuration management plan. In cases where several baselines are established, each baseline 
serves as a cutoff point for one segment of development, while simultaneously acting as the 
step off point for another segment. The characteristics common to all baselines are that the 
design of the system will be approved at the point of their establishment and it is believed 
that any changes to this design will have some impact on the future development of the 
system. 

Baseline management is one technique for performing configuration identification. It identifies 
the system and TCB design and development as a series of phases or baselines that are 
subject to configuration control. Used in conjunction with configuration items, this is 
another effective way to identify the system and its TCB configuration throughout its life- 
cycle. 

"For each different type of baseline, the individual components to be controlled should be 
identified, and any changes that update the current configuration should be approved and 
documented. For each intermediate product in the development [life-cycle] there is only one 
baseline. The current configuration can be found by applying all approved changes to the 
baseline. "[2] 

In a system defining several baselines for different stages of development, these baselines or 
milestones should be established at the system inception to serve as guides throughout the 
development process. Although specific baselines are established in this case, alternatives 
may be recommended to promote greater design flexibility or efficiency. The number of 
baselines that may be established for a system will vary depending upon the size and 
complexity of the system and the methods supported by the designers and developers. It is 



possible to establish multiple baselines existing at the same time so long as configuration 
management practices are applied properly to each baseline. The following example will 
discuss the baseline concept using three common baseline categories: functional, allocated, 
and product. It should be emphasized that these are simply basic milestones and baselines 
should be established depending upon the decisions of the designers and developers. 

The first baseline, the functional baseline, is established at the system inception. It is derived 
from the performance and objectives criteria documentation that consists of specifications 
defining the system requirements. Once these specifications have been established, any 
changes to them should be approved. 

The requirements produced in the functional baseline may be divided and subdivided into 
various configuration items. Once it has been decided what the configuration items will be, 
each of the items should be given a configuration identifier. From the analysis of the system 
requirements the allocated baseline will be established. This baseline identifies all of the 
required functions with a specific configuration item that is responsible for the function. In 
this baseline, an individual should be charged with the responsibility for each configuration 
item. All changes affecting specifications defining design requirements for the system or its 
configuration items as stated in the allocated baseline should require approval of the 
responsible individual. 

The final baseline, the product baseline, should contain that version of the system that will 
be turned over for integration testing. This baseline signifies the end of the development 
phase and should contain a releasable version of the system. 

The baseline example mention earlier in which one baseline is established for a single version 
of a system entails the same reasoning as the functional, allocated, and product baseline 
example. The system established as a baseline in the single baseline example will need to 
have an approved design before being placed under configuration control. Prior to the design 
approval, the system design will have to have undergone some type of functional review and 
a process that would allocate these functions to various configuration items. Although the 
early processes of the design will not be as formal in the single baseline example as they are 
when the early tasks are individually defined, the system will still benefit from being under 
the control of configuration management as a baseline. The main point of establishing any 
baseline is controlling changes to that baseline by requiring any changes to it to have to 
undergo an established change control process. 

9.2 Configuration Management at MER, Inc. 

MER, Inc., is a manufacturer of computer systems. Their latest project consists of building 
a system that will meet the B2 requirements of the TCSEC. In the past, their configuration 
management has only consisted of quality assurance checks, but to meet the B2 requirements 
they realize that they will need to have specific configuration management procedures in 
place during the development and maintenance of the system. 

15 



The project manager was assigned the task of writing the configuration management 
procedures and elected to present them in a configuration management plan. After doing 
some research on what should be contained in the configuration management plan, he 
proceeded to write a plan for MER, Inc. The configuration management plan that was 
written listed all of the steps to be followed when carrying out configuration management 
for the system. It described the procedures to be followed by the development team and 
described the automated tools that were going to be used at MER, Inc. for configuration 
management. These tools consisted of an online tracking data base to be used for status 
accounting, an online data base that contained a listing of all of the items under configuration 
control, and automated libraries used for storing software. Before development began, all of 
the development team was responsible for reading the configuration management plan to 
ensure that they were aware of the procedures to be followed for configuration management. 

As the system was developed, the TCB hardware, software, and firmware were labeled using 
a configuration item numbering scheme that had been explained in the configuration 
management plan. In addition, the documentation and tests accompanying these items were 
also given configuration item numbers to assure a consistent mapping between TCB code and 
these items. All of the configuration item numbers and a description of the items were stored 
in a data base that could be queried at any time to derive the configuration of the entire 
system. Software and documentation were stored in a software library where they could be 
retrieved and worked on without affecting the master versions. The master copies of all 
software were stored in a master library that contained the releasable versions of the software. 
Both of these libraries are protected by a discretionary access control mechanism to prevent 
any unauthorized personnel from tampering with the software. 

During the development of the system, changes were required. The procedures for performing 
a change under configuration control are described in the configuration management plan. 
These are the same procedures that will remain in effect throughout the life-cycle of the 
system. For each proposed change, a decision has to be made by management whether or 
not the change is feasible and necessary. MER, Inc. has an online forum for reviewing 
suggested changes. This forum makes it possible for all of the members of the development 
team to comment on how the proposed change may affect their work. Management would 
often consult this forum to help arrive at their final decision. 

After a decision was made, a programmer was assigned to perform the change. The 
programmer would retrieve the most recent version of the software from the software library 
and proceed to change it. As the change was being performed, the changes were entered 
into the online tracking data base. This made it possible for members of the development 
team to query this data base to find the current status of the change at any time. After the 
change had been performed it was tested and documented, and upon successful completion 
it was forwarded to a reviewer. This reviewer was the software manager, who was the only 
person authorized to approve a changed version for release. After the change was approved 
for release, the changed version was stored in the master library and a second copy was 
stored in the software library. Each change stored in these libraries was given a new 
configuration identification number. A tool was available at MER, Inc. that made it possible 

16 



to identify changes made to software. It compared any two versions of the software and 
provided a line-by-line listing of the differences between the two. 

It was realized at the beginning of the development process that there would be times when 
critical changes would need to be performed that would not be able to undergo this review 
process.  For these changes, emergency procedures had been listed in the configuration 
management plan and a critical fix library was available to record critical changes that had 
occurred since a release. 

A control process for changes to the TCB hardware was also provided for in the configuration 
management plan. The procedures ensured that changes to the TCB hardware were traceable 
and did not violate the security assumptions made by the TCB software. Similar to software 
changes,   all   hardware   changes   were   reviewed   by  the   project   manager   before   being 
implemented. 
After a change is made to the TCB software, MER, Inc. performs a configuration audit to 
verify the information that exists in the tracking data base. Whether or not a change is 
performed, the configuration management plan at MER, Inc. specifies that a configuration 
audit be performed at least once a month. This audit compares the current master version 
with the status accounting information to verify that no changes have been inserted that 
were not approved. 

This configuration management plan encompasses  the descriptive  top-level specification 
(DTLS), implementation documentation, source code, object code, test fixtures, and test 
documentation, and has been found to satisfy the TCSEC requirements for configuration 
management at class B2. 

9.3 The Configuration Control Board (CCB) 

Configuration control may be performed in different ways. One method of configuration 
control that is in use by systems already evaluated at TCSEC Class B2 and above is to have 
the control carried out by a body of qualified individuals known as the Configuration Control 
Board (CCB), also known as the Configuration Change Board. The Board is headed by a 
chairperson, who is responsible for scheduling meetings and for giving the final approval on 
any proposed changes. The membership of the CCB may vary in size and composition from 
organization to organization, but it should include members from any or all of the following 
areas of the system team: 

* Program Management 
* System Engineering 
* Quality Assurance 
* Technical Support 
* Integration and Test 
* System Installation 
* Technical Documentation 
* Hardware and Software/Firmware Acquisition 
* Program Development 
* Security Engineering 
* User Groups 

17 



The members of the CCB should interact periodically, either through formal meetings, 
electronic forums, or any other available means, to discuss configuration management topics 
such as proposed changes, configuration status accounting reports, and other topics that may 
be of interest to the different areas of the system development. These interactions should be 
held at periodic intervals to keep the entire system team up-to-date with all advancements or 
alterations in the system. The Board serves to control changes to the system and ensures 
that only approved changes are implemented into the system. The CCB carries out this 
function by considering all proposals for modifications and new acquisitions and by making 
decisions regarding them. 

An important part of having cross representation in the CCB from various groups involved 
in the system development is to prevent "unnecessary and contradictory changes to the 
system while allowing changes that are responsive to new requirements, changed functional 
allocations, and failed tests."[2] All of the members of the Board should have a chance to 
voice their opinions on proposed changes. For example, if system engineering proposes a 
change that will affect security, both sides should be able to present their case at a CCB 
meeting. If diversity did not exist in the CCB, changes may be performed, and upon 
implementation may be found to be incompatible with the rest of the system. 

The configuration control process begins with the documentation of a change request. This 
change request should include justification for the proposed change, all of the affected items 
and documents, and the proposed solution. The change request should be recorded, either 
manually or online in order to provide a way of tracking all proposed changes to the system 
and to ensure against duplicate change requests being processed. 

When the change request is recorded, it should be distributed for analysis by the CCB who 
will review and approve or disapprove the change request. An analysis of the total impact 
of the change will decide whether or not the change should be performed. The CCB will 
approve or disapprove the change request depending upon whether or not the change is 
viewed as a necessary and feasible change that will further the design goals of the system. In 
situations where trusted systems are involved, the CCB shall also ensure that the change will 
not affect the security policy of the system. 

Once a decision has been reached regarding any modifications, the CCB is responsible for 
prioritizing the approved modifications to ensure that those that are most important are 
developed first. When prioritizing changes, an effort should be made to have the changes 
performed in the most logical order whenever possible. The CCB is also responsible for 
assigning an authority to perform the change and for ensuring that the configuration 
documentation is updated properly. The person assigned to do the change should have the 
proper authorization to modify the system, and in trusted systems processing sensitive 
information, this authorization shall be required. During the development of any enhancements 
and new developments, the CCB continues to exert control over the system by determining 
the level of testing required for all developments. 

Upon completion of the change, the CCB is responsible for verifying that the change has 
been properly incorporated and that only the approved change has been incorporated. Tests 



should be performed on the modified system or TCB to ensure that they function properly 
after the change is completed. The CCB should review the test results of any developments 
and should be the final voice on release decisions. 

The use of a CCB is one way of performing configuration control, but not every vendor may 
have the desire or resources to establish one. Whatever the preference, there should still be 
some way of performing the control processes described previously. 

19 



10. OTHER TOPICS 

10. T Trusted Distribution 

Related to the configuration management requirements for trusted systems is the TCSEC 
requirement for trusted distribution at class Al which states: 

"A trusted ADP system control and distribution facility shall be provided for 
maintaining the integrity of the mapping between the master data describing the 
current version of the TCB and the on-site master copy of the code for the current 
version. Procedures (e.g., site security acceptance testing) shall exist for assuring 
that the TCB software, firmware, and hardware updates distributed to a customer 
are exactly as specified by the master copies."[1] 

Two questions that the trusted distribution process should answer are: (a) Did the product 
received come from the organization who was supposed to have sent it? and (-b) Did the 
recipient receive exactly what the sender intended? 

Configuration management assists trusted distribution by ensuring that no alterations are 
made to the TCB from the time of approved modification to the time of release. The 
additional configuration management requirement at Al that supports this is, "A combination 
of technical, physical and procedural safeguards, shall be used to protect from unauthorized 
modification or destruction the master copy or copies of all material used to generate the 
TCB"[1] (Requirement 19). This requirement calls for strict control over changes made to 
any versions of the TCB. The possibility that a change may not be performed as specified, 
or that a harmful modification may be inserted into the TCB should be considered and the 
authority to perform changes to the master copy should be restricted. A single master copy 
authority should be made responsible for ensuring that only approved and acceptable changes 
are implemented into the master copy. 

Configuration status accounting records and auditing reports can provide accountability for 
all TCB versions in use. In the event of altered copies being distributed or "bogus" copies 
being distributed that were not manufactured by the vendor, configuration management 
records will be able to assess the validity and accuracy of all TCB versions. Trusted 
distribution displays the need for configuration control over all changes to the TCB. Without 
configuration control there would be no accountability for the TCB versions distributed to 
the customer. 

10.2 Functional Testing 

"The system developer shall provide to the evaluators a document that describes the test 
plan, test procedures that show how the security mechanisms were tested, and results of the 
security mechanisms' functional testing. "[1] The creation and maintenance of these functional 
tests is required to be part of the configuration management procedures. Test results and any 
affected test documentation shall be maintained under configuration management and updated 

20 



wherever necessary (Requirements 7, 8). The tests should be repeatable, and include sufficient 
documentation so that any knowledgeable programmer will be able to figure out how to run 
them. The test plan for the system should be described in the functional specification (or 
other design documentation) for the TCB, along with descriptions of the test programs. The 
test plan and programs should be reviewed and audited along with the programs they test, 
although the coding standards need not be as strict as those of the tested programs. 

It is not acceptable to only generate tests for code that was opened or replaced, but all of 
the portions of the TCB that were affected by the change should also be tested. The NCSC 
evaluators can provide a description of the security functional tests required to meet the 
TCSEC testing requirements, including the testing required as stated above for configuration 
management. 

10.3 Configuration Management Training 

Each new technical employee should receive training in the configuration management 
procedures that a particular installation follows. Experienced programmers, although they 
may be familiar with some form of configuration management, will also require training in 
any new procedures, i.e., an automated accounting system, that will be required to be 
followed. Training should be conducted either "by holding formal classes or by setting aside 
sufficient time for the reading of the company wide configuration standards."[2] New 
programmers should become familiar with the Configuration Management Plan before being 
allowed to incorporate any changes into the design baseline. It should be stressed that a 
failure to maintain the configuration management standards resulting from untrained 
employees, could prevent the system from receiving a rating.[2] 

10.4 Configuration Management Supervision 

A successful configuration management system requires the following of many procedures. 
Considering the demands made on the system staff, errors may occur and shortcuts may be 
sought which will jeopardize the entire configuration management plan. A review process 
should be present to ensure that no single person can create a change to the system and 
implement it without being subject to some type of approval process. Supervisors, who are 
responsible for the personnel performing the change should be required to sign an official 
record that the change is the correct change.[2] 

Proper supervision also provides assurance that whoever performs the change has the proper 
authorization to do so. Changes should not be performed by personnel that are not qualified 
to perform the change. Also, in systems that process sensitive information, the programmer 
performing the change shall possess the proper security clearance to perform the change. 

Management itself must directly support the configuration management plan in order for it 
to work. It should not encourage cutting configuration management corners under any 
circumstances, e.g., due to scheduling or budgeting. Management should be willing to 
support the expenditure of money, people, and time to allow for proper configuration 
management. 

21 



11. RATINGS MAINTENANCE PROGRAM 

The Ratings Maintenance Program (RAMP) has been developed by the NCSC in an effort 
to keep the Evaluated Products List (EPL) current. By training vendor personnel to recognize 
which changes may adversely affect the implemetation of the security policy of the system, 
and to track these changes to the evaluated product through the use of configuration 
management, RAMP will permit a vendor to maintain the rating of the evaluated product 
without having to re-evaluate the new version. Because changes from one version of an 
operating system to the next version may affect the security features and assurances of that 
operating system, configuration management is an integral part of RAMP. For a system to 
maintain its rating under this program, the NCSC shall be assured, through the vendor's 
configuration management procedures, that the changes made have not adversely affected the 
implementation of the security mechanisms and assurances of the system. 

Each RAMP participant shall develop an NCSC approved Rating Maintenance Plan (RMPlan) 
which includes a detailed Configuration Management Plan (CMP) to support the rating 
maintenance process. This requirement applies to all systems participating in RAMP, 
regardless of class. For further information about the RAMP program and about configuration 
management requirements for RAMP, contact: 

National Computer Security Center 
9800 Savage Road 
Fort George G. Meade, MD 20755-6000 
Attention: Chief, Requirements and Resources Division 

22 



12. CONFIGURATION MANAGEMENT SUMMARY 

The assurance provided by configuration management is beneficial to all systems. It is a 
requirement for trusted systems for classes B2 and above that a configuration management 
system "be in place that maintains control of changes to the descriptive top-level specification, 
other design data, implementation documentation, source code, the running version of the 
object code, and test fixtures and documentation"!; 1] (Requirements 1, 2, 3, 4, 5, 6, 7, 8). 
Although configuration management is a requirement for trusted systems for classes B2 and 
above, it should be in place in all systems regardless of class rating, or if the system has a 
rating at all. 

Successful configuration management is built around four main objectives: control, 
identification, accounting, and auditing. Through the accomplishment of these objectives, 
configuration management is able to maintain control over the TCB and protect it against 
"unauthorized changes that could cause protection mechanisms to malfunction or be bypassed 
completely."[1] Even for those aspects of the system which are not security-relevant, 
configuration management is still a valuable method of ensuring that all of the properties of 
a system are maintained after a change. It is very important to the success of configuration 
management that a formal configuration management plan be adhered to during the life-cycle 
of the system. 

A successful configuration management plan should begin with early and complete definition 
of configuration management goals, scope, and procedures. The success of configuration 
management is dependent upon accuracy. Changes should be identified and accounted for 
accurately, and after the change is completed, the change, and all affected parts of the 
system should be thoroughly documented and tested. 

Configuration management provides control and traceability for all changes made to the 
system. Changes in progress are able to be monitored through configuration status accounting 
information in order to control the change and to evaluate its impact on other parts of the 
system. 

An important part of having a successful configuration management plan is that the people 
involved with it must adhere to its procedures in order to keep all documentation current 
and the status of changes up-to-date. 

With a firm and well documented configuration management plan in place, the occurrence of 
any unnecessary or duplicate changes will be reduced greatly and any necessary changes that 
are required should be able to be identified with great ease. An effective configuration 
management system should be able to show what was supposed to have been built, what was 
built, and what is presently being built. 

23 



APPENDIX A: AUTOMATED TOOLS 

Automated tools may be used to perform some of the configuration management functions 
that previously had to be performed manually. A data base management system, even with 
just a limited query system, may be used to perform the configuration audit and status 
accounting functions of configuration management. The principle behind using automated 
systems is that text, both from source code and other documents involved in the development 
of the system, can be entered into a Master Library and modified only through the use of 
the automated system. This prevents anyone from performing a change without having the 
proper authorization to access the configuration data base. "In general, only one program 
librarian, who should be the project manager or someone directly responsible to the manager, 
should have write access to the Master Library during development. "[2] 

A number of software developers have created software control facilities that are currently 
available to be used for configuration status accounting. A brief discussion of two-of these 
systems follows. 

A.I UNIX (1) SCCS 

"Under the Unix (1) system, the make utility, and the elements admin, get, prs, and delta, 
which comprise the Source Code Control System, provide a basic configuration accounting 
system. Initially a directory is created using the mkdir function. At this point, it is possible 
to use the owner, group, world protection scheme provided by Unix (I) to protect the 
directory. In addition a list of login identifiers is created which specifies who may update 
each element to be processed by SCCS." 

Following directory initiation, each document is entered using the admin -n function. Each 
entry that is made is referred to as an element. As each update is made to a new element, a 
new generation of that element, known as a delta, is created. The name of each element that 
is stored in a file by SCCS is preceded by "s.". If a file is added to the directory that does 
not contain this prefix, it is ignored by the SCCS function calls. When the admin function 
is called, a number of arguments may be specified that "specify parameters that may affect 
the file, and may be changed by a subsequent call to admin. The alogin argument is used to 
create the equivalent of an access control list by listing the login names of users who can 
apply the delta function to the element, thus creating either a new generation (delta) or 
variant branch. "[2] 

The initial release, or initial delta, of each code module is entered into the SCCS directory 
through the admin -n function, thus creating the Master Library. The programmer may 
update each module in the Master Library by using the get -e function "which indicates that 
the module will be edited and then the completed document will be reentered into the 
directory using the delta function. As long as the module being edited was extracted from 
the SCCS directory using get -e, it can be returned to the library using delta, and all 

(1) UNIX is a registered trademark of AT&T Bell Laboratories 

25 



necessary update information will be entered with it. The get function can be used to extract 
a copy of any document, but after it is edited it cannot be reentered into the library. "[2] 

"SCCS provides the capability to specify a software build by the way it assigns an SCCS 
Identification Number (SID) to each output of the delta function."[2] One can get any 
version of a text or source code by specifying the appropriate SID. "There are straightforward 
rules regarding how to specify the particular SID desired when get is called. If no SID is 
specified, the latest release and level is provided." The SID of the resulting call to delta is 
affected by the SID used when get -e is called.[2] 

"The function prs allows for configuration accounting, since it extracts information from 
the s. files in the SCCS directory and prints them out for the user. Prs can be used to 
quickly create reports, listing one or two important values such as the last modified date for 
many SCCS files, or many values for one or two file. Larger reports can also be processed 
and created using an editor. "[2] 

A.2 VAX DEC/CMS 

"VAX DEC/CMS[7] is also used to track a history of each text file stored in a CMS 
directory, but CMS does significantly more auditing and cross-checking than admin does. 
For example, if an editor is used directly to modify a file in a CMS directory, any further 
use by CMS of that file generates a warning meassage. Any files entered into a CMS directory 
by other than the CMS utility will cause CMS itself to issue a warning message when it is 
invoked for that directory. Otherwise, the process of configuration accounting is similar to 
SCCS. 

The CMS CREATE LIBRARY function causes a directory to be set up, and initial logging 
to start. The project manager enters each element into the directory by using the CMS 
CREATE ELEMENT function. One must RESERVE an element of a library to modify it, 
and it can only be put back into the library using the REPLACE function. If someone else 
has RESERVEd an element between the original programmer's RESERVE and REPLACE 
calls, a warning is issued to both programmers and the occurrence is logged. To get a sample 
copy of the text, such as a program source, the FETCH function will generate the latest 
generation or any specified generation of an element, but will not allow an edited copy to be 
reinserted into the library. The SHOW function can be used to audit the information about 
each element in the library. 

Differences between SCCS and DEC/CMS appear concerning software builds. In Unix (1) a 
build must be either described in a makefile, or else each element to be used in a build must 
be retrieved from the SCCS directory using get, placed in another directory, and the makefile 
then may refer to these source files to create the executable build. In CMS, the process of 
selecting only a subset of source files, including some which are not the most current, is 
automated by the use of class and group mechanisms. To explain how this works, one must 
understand the CMS concepts of generations and variants. Each generation of a file 
corresponds to a Unix (1) delta. Generations are normally numbered in ascending order. 
CMS also has the capability of creating a variant development line to any generation by 

26 



specifying in the REPLACE function a variant name. For example, if one RESERVES 
generation 3 of an element, then performs a REPLACE/VARIANT = T, this will create 
generation 3T1 which may then be developed separately from generation 3. The first time 
this is used, the equivalent of an SCCS branch delta is created. Branches themselves can 
have branches, a capability that SCCS does not have. 

A group can be defined within a CMS directory, using the CMS CREATE GROUP, and 
CMS INSERT ELEMENT functions. A group is composed of all generations, including 
variant generations, of all elements inserted into the group. Groups can be included within 
other groups. Groups can be defined with a non-empty intersection so that they have 
overlapping membership. 

The CMS CREATE CLASS function, together with the CMS INSERT GENERATION 
function, can be used to specify the exact elements of a software build, and the 
DESCRIPTION file can then refer to the entire class by using the /GENERA- 
TION =classname qualifier on either the source or action line of a dependency rule. The 
makefile required by Unix (1) SCCS can be much more complex when it is required to 
describe a software build for intermediate testing."[2] 

I) Unix is a registered trade mark of Bell Laboratories 

27 



GLOSSARY 

Automatic Data Processing (ADP) System — An assembly of computer hardware, firmware, 
and software configured for the purpose of classifying, sorting, calculating, computing, 
summarizing, transmitting and receiving, storing, and retrieving data with a minimum of 
human intervention.[1] 

Baseline — A set of critical observations or data used for a comparison or a control. A 
baseline indicates a cutoff point in the design and development of a configuration item 
beyond which configuration does not evolve without undergoing strict configuration control 
policies and procedures. 

Configuration Accounting — The recording and reporting of configuration item descriptions 
and all departures from the baseline during design and production.[2] 

Configuration Audit — An independent review of computer software for the purpose of 
assessing compliance with established requirements, standards, and baselines.[2] 

Configuration Control — The process of controlling modifications to the system's design, 
hardware, firmware, software, and documentation which provides sufficient assurance the 
system is protected against the introduction of improper modification prior to, during, and 
after system implementation. 

Configuration Control Board (CCB) — An established committee that is the final authority 
on all proposed changes to the ADP system. 

Configuration Identification — The identifying of the system configuration throughout the 
design, development, test, and production tasks. 

Configuration Item — The smallest component of hardware, software, firmware, documen- 
tation, or any of its discrete portions, which is tracked by the configuration management 
system. 

Configuration Management — The management of changes made to a system's hardware, 
software, firmware, documentation, tests, test fixtures, and test documentation throughout 
the development and operational life of the system. 

Descriptive Top-Level Specification (DTLS) — A top-level specification that is written in 
a natural language (e.g., English), an informal program design notation, or a combination of 
the two.[l] 

Firmware — Equipments or devices within which computer programming instructions 
necessary to the performance of the device's discrete functions are electrically embedded in 
such a manner that they cannot be electrically altered during normal device operations.[3] 

Formal Security Policy Model — An accurate and precise description, in a formal, 
mathematical language, of the security policy supported by the system. 

29 



Formal Top-Level Specification — A top-level specification that is written in a formal 
mathematical language to allow theorems showing the correspondence of the system 
specifications to its formal requirements to be hypothesized and formally proven.[1] 

Granularity — The relative fineness or courseness by which a mechanism can be adjusted. 
The phrase "the granularity of a single user" means the access control mechanism can be 
adjusted to include or exclude any single user.[l] 

Hardware — The electric, electronic, and mechanical equipment used for processing data.[3] 

Informal Security Policy Model — An accurate and precise description, in a natural 
language (e.g., English), of the security policy supported by the system. 

Software — Various programming aids that are frequently supplied by the manufacturers to 
facilitate the purchaser's efficient operation of the equipment. Such software items include 
various assemblers, generators, subroutine libraries, compilers, operating systems, and 
industry application programs.[6] 

Tools — The means for achieving an end result. The tools referred to in this guideline are 
documentation, procedures, and the organizational body, i.e., the CCB, which all contribute 
to achieving the control objective of configuration management. 

Trusted Computing Base (TCB) — The totality of protection mechanisms within a computer 
system — including hardware, firmware, and software — the combination of which is 
responsible for enforcing a security policy. A TCB consists of one or more components that 
together enforce a unified security policy over a product or system. The ability of a TCB to 
correctly enforce a security policy depends solely on the mechanisms within the TCB and on 
the correct input by system administrative personnel of parameters (e.g., a user's clearance) 
related to the security policy.[1] 

30 



REFERENCES 

1. National Computer Security Center, DOD Trusted Computer System Evaluation Criteria, 
DOD, DOD 5200.28-STD, 1985. 

2. Brown, R. Leonard, "Configuration Management for Development of a Secure Computer 
System", ATR-88(3777-12)-l, The Aerospace Corporation, 1987. 

3. Subcommittee   on   Automated   Information   System   Security,   Working   Group   #3, 
"Dictionary of Computer Security Terminology", 23 November 1986. 

4. Bersoff, Edward H., Henderson, Vilas D., Siegal, Stanley G., Software Configuration 
Management, Prentice Hall, Inc., 1980. 

5. Samaras, Thomas T., Czerwinski, Frank L., Fundamentals of Configuration Management, 
WileyTnterscience, 1971. 

6. Sipple, Charles J., Computer Dictionary, Fourth Edition, Howard W. Sams & Co., 1985. 

7. Digital  Equipment  Corporation,   VAX DEC/CMS Reference Manual,  AA-L372B-TE, 
Digital Equipment Corporation, 1984. 

t*U.S.  GOVERNMENT PRINTING OFFICE: 1988-219-388 


